CBCS: 2022-2023

M.Sc-II

Mathematics

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

Two Year M.Sc. Degree Program in Mathematics (Faculty of Science & Technology)

Syllabus for

M.Sc.-II (Mathematics)

Choice Based Credit System Syllabus To be implemented from the academic year 2022-2023

M. Sc.-II

Title of the Course: M.Sc (Mathematics)

Aims and Objectives of the Course

Sr. No.	Objectives
1.	To maintain an updated curriculum.
2.	To take care of fast development in the knowledge of mathematics
3.	To enhance the quality and standards of Mathematics Education.
4.	To provide a broad common framework, for exchange, mobility, and free dialogue
	across theIndian Mathematical and associated community.

Expected Course Specific Learning Outcome

Sr. No.	Objectives			
1.	Students will have an aptitude to Study higher Mathematics and creative work			
	in Mathematics.			
2.	Students will equipped themselves with that part of Mathematics which is needed			
	for various branches of Sciences or Humanities in which they have an aptitude for			
	higher studies and original work.			

Structure of M.Sc-I Mathematics Course

Sr.	Courses		Continuous Internal Evaluation	End Semester	Total	Credits
No.	Semester-I	Semester-II	(CIE) (Internal Marks)	Exam (External Marks)	Marks	creates
	21SMMT111:	21SMMT121:				
1.	Linear Algebra	Complex Analysis	50	50	100	04
2.	21SMMT112: Real Analysis	21SMMT122: General Topology	50	50	100	04

3.	21SMMT113:	21SMMT123:	50	50	100	04
	GroupTheory	Ring				
		Theory				
	21SMMT114:	21SMMT124:				
4.	Advanced Calculus	Advanced	50	50	100	04
		Numerical				
		Analysis				
	21SMMT115:	21SMMT125:				
5.	Ordinary	Partial	50	50	100	04
	Differential	Differential				
	Equations	Equations				
Extra credit course						
6.	21PGHUR11M:	21PGCYS12M:	75		75	03
	Human Rights	Cyber Security				

Structure of M.Sc-II Mathematics Course

Sr. No.	Courses		Continuous Internal Evaluation	End Semester Exam	Total	Credits
	Semester-III	Semester-IV	(CIE) (Internal Marks)	(CIE) (Internal Marks)	Marks	
		Compulsory	v Courses			
1.	21SMMT231:	21SMMT241: Fourier Series and	50	50	100	04
	Functional	Boundary Value				
	Analysis	Problems				
2.	21SMMT232 : Field Theory	21SMMT242: Differential Geometry	50	50	100	04
3.	21SMMT233T: Programming with Python (Theory)	21SMMT243T: Introduction to Data Science (Theory)	25	25	50	02

4	21SMMT233P:	21SMMT243P:				
4.	Programming	Introduction to	25	25	50	02
	with Python	Data Science				
	(Practical)	(Practical)				
	C	Optional Courses (Any	two of four c	courses)	I	
5.	21SMMT234A:	21SMMT244A:				
	Discrete	Number Theory	50	50	100	04
	Mathematics					
6	21SMMT234B:	21SMMT244B:				
0.	Probability and	Statistical	50	50	100	04
	Stochastic Process	Inference	50	50	100	04
	21SMMT234C:	21SMMT244C:				
7.	Coding Theory	Integral	50	50	100	04
		Equations	50	50	100	04
8	21SMMT234D:	21SMMT244D:				
0.	Students can	Students can				
	choose one	choose one course				
	course from	from Swayam /				
	Swayam	NPTEL /E-	50	50	100	04
	/NPTEL / E-	Pathashala etc,				
	Pathashala etc, if	if interested.				
	interested.					
	Extra Credit Courses					
	21PGHPE23M:	21DSDLT24M:				
9.	Human Values &	Introduction to				
	Professional	LaTeX and	75		75	03
	Ethics	SageMath				

For Continuous Internal Evaluation (CIE), evaluation of theory courses will be done continuously throughout the semester. CIE will be of 50% marks for CGPA papers.

SR. NO.		COMPONENTS		
1.	CIE I	Mid Semester examination	15	
2.	CIE II	Two Class Test of 15 marks each (Best of 2)	15	
3.	CIE III	One Presentation/Seminar/ MCQ Test	10	
4.	CIE IV	Class Assignments / One group discussion / Open Book Test	10	
		TOTAL	50	

CIE for 4 credits theory paper: It will be divided as follows:

CIE for 4 credits Practical paper: It will be divided as follows:

SR. NO.		COMPONENTS		
1.	CIE I	Mock Practical Examination	30	
2.	CIE II	Viva Voce	10	
3.	CIE III	Journal / project report/ dissertation report completion and certification on time.	05	
4.	CIE IV	Attendance	05	
		TOTAL	50	

Above components will also be followed for 2 credit theory and practical paper.

Syllabus:

Course/ Paper Title	Functional Analysis
Course Code	21SMMT231
Semester	III
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Banach Spaces	25
	 The definition and some examples. Continuous linear transformations. The Hahn-Banach theorem. The natural imbedding of N in N**. The open mapping theorem. 	5 5 5 5 5
Unit II	Hilbert Spaces	25
	 The definition and some simple properties. Orthogonal complements. Orthonormal sets. The conjugate space H*. The adjoint of an operator. Self-adjoint operators. Normal and unitary operators. Projections. 	3 3 4 3 3 3 3 3

Unit III	Finite-Dimensional Spectral Theory	10
	1. Matrices.	2
	2. Determinants and the spectrum of an operator.	3
	3. The spectral theorem.	3
	4. A survey of the situation.	2

G. F. Simmons, Introduction to Topology and Modern Analysis, Tata McGraw Hill.

Unit I: Chapter 9.

Unit II: Chapter 10.

Unit III: Chapter 11.

References:

1. Books:

- 1. B. V. Limaye, Functional Analysis, Wiley Eastern Ltd.
- 2. George Bachman, Lawrence Narici, Functional Analysis, Dover Publications.
- 3. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley, 1989.
- S. Kesavan Functional Analysis, Hindustan Book Agency(India), ISBN 978-81-85931-87-6, ISBN 978-93-86279-42-2(eBook).
- 5. H. L. Royden Real Analysis, Third Edition, Prentice-Hall of india Private Limited, ISBN-8120309731.

- 1. <u>https://nptel.ac.in/courses/111/105/111105037/</u>
- 2. <u>https://nptel.ac.in/courses/111/106/111106147/</u>

Course/ Paper Title	Field Theory
Course Code	21SMMT232
Semester	III
No. of Credits	04

Unit No.	Title with Contents	No. of Lectures
Unit I	Algebraic Extension of fields	20
	1. Irreducible polynomials and Eisenstein criterion.	5
	2. Adjunction of roots.	5
	3. Algebraic extensions.	5
	4. Algebraically closed fields.	5
Unit II	Normal and separable extensions	15
	1. Splitting fields.	3
	2. Normal extensions.	3
	3. Multiple roots.	3
	4. Finite fields.	3
	5. Separable extension.	3
Unit III	Galois Theory	10
	1. Automorphism groups and fixed fields.	3
	2. Fundamental theorem of Galois theory.	4
	3. Fundamental theorem of algebra.	3
Unit IV	Applications of Galois theory to classical problems	15
	1. Roots of unity and cyclotomic polynomials.	3
	2. Cyclic extensions.	3

3. Polynomials so	blvable by radicals. 3	
4. Symmetric fun	actions. 3	
5. Ruler and comp	pass constructions. 3	

P. B. Bhattacharyya, S. K. Jain, S. R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, Second Edition.

Unit I: Chapter 15.

Unit II: Chapter 16.

Unit III: Chapter 17.

Unit IV: Chapter 18.

References:

1. Books:

- 1. D. Dummit, R. M. Foote, Abstract Algebra, 2nd Edition, Wiley Eastern Ltd.
- T. A. Hungerford, Algebra, Graduate Texts in Mathematics, Vol. 73, Springer Verlag, 1980 (Indian Reprint 2004).
- 3. O. Zariski, P. Sammuel, Commutative Algebra, Vol. 1, Van Nostrand.
- 4. I. S. Luthar, I. B. S. Passi, Algebra, Vol. 4, Field Theory, Narosa Publishing House.
- 5. M. Artin, Algebra, Prentice Hall India, Second Edition.
- 6. Joseph Rotman, Galois Theory, Springer, 2nd Edition, ISBN-9780387985411.

- 1. <u>https://nptel.ac.in/courses/111/101/111101117/</u>
- 2. <u>https://www.youtube.com/watch?v=G_BNxjRrQYI&list=PLyqSpQzTE6M94LuHxxu4OrViX4K4</u> <u>50H7</u>

Course/ Paper Title	Programming with Python(Theory)
Course Code	21SMMT233T
Semester	III
No. of Credits	02

Unit No.	Title with Contents	No. of Lectures
Unit I	Introduction to Python, Python Objects	02
	1. Features of Python: Easy; Type and Run; Syntax; Mixing;	
	Dynamic Typing; Built in Object Types; Numerous	
	Libraries and Tools.	
	2. Chronology and Uses: Chronology; Uses.	
	3. Installation of Anaconda.	
	4. Basic Data Types Revisited: Fractions.	
	5. Strings.	
	6. Lists and Tuples: List; Tuples; Features of Tuples.	
	7. Introduction to NumPy.	
	8. Introduction to Pandas Data Structures: Series;	
	DataFrame; Index Objects.	
Unit II	Conditional Statements	02
	1. if, if-else, and if-elif-else constructs.	
	2. The if-elif-else Ladder.	
	3. Logical Operators.	
	4. The Ternary Operator	
	5. The get Construct.	
	6. Examples.	
Unit III	Looping	02
	1. While.	
	2. Patterns.	
	3. Nesting and Applications of Loops in Lists.	

Unit IV	Functio	ons	03
	1.		
	Reusability of Code; Manageability.		
	2.	Basic Terminology: Name of Functions; Arguments;	
		Return Value.	
	3.	Definition and Invocation: Working.	
	4.	Type of Functions: Advantage of Arguments.	
	5.	Implementing Search.	
	6.	Scope.	
	7.	Recursion: Rabbit Problem; Disadvantages of Using	
		Recursion.	
Unit V	Iteratio	ns, Generators, and Comprehensions	02
	1.	The Power of "For".	
	2.	Iterators.	
	3.	Defining an Iterable Object.	
	4.	Generators.	
	5.	Comprehensions.	
Unit VI	File Har	ndling	03
	1.	The File Handling Mechanism.	
	2.	The Open Function and File Access Modes.	
	3.	Python Functions for File Handling: The Essential Ones;	
		The OS Methods; Miscellaneous Functions and File	
		Attributes.	
	4.	Command Line Arguments.	
	5.	Implementation and Illustrations.	
	6.	Reading and Writing Data in Text Format.	
	7.	Binary Data Formats.	
Unit VII	Strings		02
	1.	The Use of "For" and "While".	
	2.	String Operators: The Concatenation Operator (+); The	
		Replication Operator; The Membership Operator.	

	3. Functions for St	tring Handling: len(); Capitalize(); find();	
	count; Endswith	h(); Encode; Decode; Miscellaneous	
	Functions.		
Unit VIII	Introduction to Object Oriented Paradigm		02
	1. Creating New Ty	ypes.	
	2. Attributes and Fu	unctions: Attributes; Functions.	
	3. Elements of Obj	ect- Oriented Programming: Class;	
	Object; Encapsu	lation; Data Hiding; Inheritance;	
	Polymorphism; I	Reusability.	
Unit IX	Classes and Objects		03
	1. Defining a Class.		
	2. Creating an Object	ct.	
	3. Scope of Data Me	embers.	
	4. Nesting.		
	5. Constructor.		
	6. Constructor Over	loading.	
	7. Destructors.		
Unit X	Inheritance		03
	1. Introduction to In	heritance and Composition: Inheritance	
	and Methods, Con	mposition.	
	2. Inheritance: Impo	ortance and Types: Need of Inheritance;	
	Types of Inheritat	nce.	
	3. Methods: Bound	Methods; Unbound Method; Methods are	
	Callable Objects;	The Importance and Usage of Super;	
	Calling the Base	Class Function Using Super.	
	4. Search in Inherita	ance Tree.	
	5. Class Interface an	nd Abstract Classes.	
Unit XI	Operator Overloading		03
	1init_Revisited: (Overloading _init_(Sort of).	
	2. Methods for Over	rloading Binary Operators.	

	3.	Overloading the += Operator.	
	4.	Overloading the > and < Operators.	
	5.	Overloading the _boolEan_ Operators: Precedence of	
		_bool_over _len	
	6.	Destructors.	
Unit XII	Excep	tion Handling	03
	1.	Importance and Mechanism: An example of Try/Catch;	
		Manually Raising Exception.	
	2.	Built In Exceptions in Python:	
	3.	The Process: Exception Handling: Try/Except; Raising	
		Exceptions.	
	4.	Crafting User Defined Exceptions.	
	5.	An Example of Exception Handling.	

1. H. Bhasin: Python Basics, MERCURY LEARNING AND INFORMATION Dulles, Virginia Boston, Massachusetts New Delhi.

Unit I: Chapter-1: 1.2, 1.4, 1.5. Chapter 2: 2.2 to 2.4, Chapter-18.

Unit II: Chapter-3: 3.2 to 3.7.

Unit III: Chapter-4: 4.2 to 4.4.

Unit IV: Chapter-5: 5.2, to 5.8.

Unit V: Chapter-6: 6.2 to 6.6.

Unit VI: Chapter-7: 7.1, to 7.6.

Unit VII: Chapter-8: 8.2, to 8.4.

Unit VIII: Chapter-9: 9.2, 9.3, 9.4.

Unit IX: Chapter-10: 10.1, to 10.8.

Unit X: Chapter-11: 11.1to 11.5.

Unit XI: Chapter-12: 12.2, to 12.8.

Unit XII: Chapter-13: 13.2, to 13.6.

2. Wes McKinney, Python for Data Analysis, Second Edition, Published by O'Reilly Media.

Unit I: Chapter-5: Section 5.1.

Unit VI: Chapter-6: Sections 6.1, 6.2.

References:

1. Books:

- 1. Mark Lutz, Programming Python, Publication O'reilly.
- 2. Wesley J. Chun, Core Python Programming, Publication Prentice Hall.
- 3. Python: Notes for Professionals, Goalkicker.com, Free Programming books.
- 4. Excel Formulas Bible- Excel 2013/2016.

2. Website:

- 1. <u>https://www.tutorialsteacher.com/python</u>
- 2. https://www.tutorialspoint.com/python/index.htm

Best IDE TOOLS for Python:

Sr. No.	Tool	Version
1	Spyder	Version 5.2.1
2	Python 3.8.10	Python 3.8.10

Course/ Paper Title	Programming with Python (Practical)
Course Code	21SMMT233P
Semester	III
No. of Credits	02

Practical No.	Practical Name	No. of Hours
1	Introduction to Python	4
2	Data types and Operators in python	4
3	Data types and Operators in python	4
4	Iterations and Conditional Statements	4
5	Iterations and Conditional Statements	4
6	Python Functions, Modules & Packages	4
7	Python Functions, Modules & Packages	4
8	Files and Directories	4
9	Practical on NUMPY Library	4
10	Practical on Pandas Library	4
11	Practical on MATPLOTLIB	4
12	Practical on Reading and Writing Data from .csv, .xlsx file.	4

* Three practical sessions for CIE.

Course/ Paper Title	Discrete Mathematics
Course Code	21SMMT234A
Semester	ш
No. of Credits	04

Unit No	Title with Contents	No. of Lectures		
	A] Graph Theory			
Unit I	Topics in Graph Theory	15		
	 Graphs; Graphs as Models; Matrices and Isomorphism; Decomposition and Special Graphs; Degree of a vertex; 	5		
	 Counting and Bijections. Paths, Cycles, Trails: Connection in Graphs; Bipartite Graphs; Eulerian Circuits; Hamiltonian Cycles. 	5		
	 Directed Graphs: Definition and Examples; Vertex Degrees; Eulerian Digraphs. 	5		
Unit II	Trees	12		
	 Trees: Properties of Trees; Distance in Trees and Graphs. Enumeration of Trees: Spanning Trees in Graphs; 	5 5		
	Minimum Spanning Trees; Shortest Paths; Connectivity;Edge Connectivity.3. Trees in Computer Science.	2		
Unit III	Matchings	3		
	1. Maximum Matchings; Hall's Matching Condition.	3		
B] Combinatorics				
Unit IV	Basic Counting Principles	10		

	1.	Two Basic Counting Principles.	2
	2.	Simple Arrangements and Selections.	2
	3.	Arrangements and Selections with Repetitions.	2
	4.	Distributions.	2
	5.	Binomial Identities.	2
Unit V	Genera	ating Functions	10
	1.	Generating Functions Models.	3
	2.	Calculating Coefficients of Generating Functions.	3
	3.	Partitions.	2
	4.	Exponential Generating Functions.	2
Unit VI	Recuri	rence Relations	10
	1.	Recurrence Relations Models.	3
	2.	Solutions of Linear Recurrence Relations.	3
	3.	Counting with Venn Diagrams.	2
	4.	Inclusion-Exclusion Formula	2

1. Douglas B. West: Introduction to Graph Theory; 2 nd Ed ⁿ ; PHI Learning Pvt. Ltd.
Unit I: Chapter 1: Sections 1.1, 1.2, 1.3 (Counting and Bijections), 1.4 (Definitions, Vertex
Degrees, Eulerian Digraphs). Chapter 7: Section 7.2 (Hamiltonian Cycles).
Unit II: Chapter 2: Section 2.1 (Properties of Trees; Distance), 2.2 (Enumeration of Trees;
Spanning Trees), 2.3. Chapter 4: Sections
4.1 (Connectivity, Edge Connectivity).
Unit III: Chapter 3: Section 3.1 (Maximum Matchings; Hall's Matching Condition).
2. Alan Tucker: Applied Combinatorics 6 th Ed ⁿ ; Wiley India.
Unit IV: Chapter 5: Sections 5.1 to 5.5.
Unit V: Chapter 6: Sections 6.1 to 6.4.
Unit VI: Chapter 7: Sections 7.1, 7.3. Chapter 8: Sections 8.1, 8.2.
References:

1. Books:

1. B. Kolman, R. Busby, S.C. Ross: Discrete Mathematical Structures, 6th Edⁿ, Pearson Edⁿ.

2. John Clark, D. A. Holton: A First Look at Graph Theory, World Scientific, 1991.

- 1. <u>https://www.youtube.com/watch?v=</u>
- E40r8DWgG40&list=PLEAYkSg4uSQ2fXcfrTGZdPuTmv98bnFY5
- 2. <u>https://nptel.ac.in/courses/111/106/111106155/</u>

Course/ Paper Title	Probability and Introduction to Stochastic Process
Course Code	21SMMT234B
Semester	III
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Probability space	08
	1. Introduction.	1
	2. Discrete probability space.	1
	3. Basic rules of probability.	1
	4. Conditional probability.	2
	5. Independence of events.	1
	6. Baye's formula	2
Unit II	Discrete random variable	16
	1. Definition.	1
	2. Probability distribution	1
	3. Expectation, variance, standard deviation of a discrete	2
	random variable.	
	4. The Bernoulli random variable, the binomial random	4
	variable, the geometric random variable, the poisson	
	random variable	
	5. Joint probability distribution.	2
	6. Covariance and correlation coefficient.	1
	7. Independence of random variables.	2
	8. Conditional probability and conditional expectation.	3
Unit III	Continuous random variables	15

	1. Definition.	1
	2. Probability distribution.	2
	3. Expectation, variance, standard deviation of a continuous	2
	random variable.	
	4. The uniform random variable, exponential random	4
	variables, gamma random variables, normal random	
	variables.	
	5. Joint probability density and probability distribution.	2
	6. Covariance and correlation coefficient.	2
	7. Independence of random variables.	2
Unit IV	Central limit theorem	04
	1. Markov's and Chebyshev's inequality for discrete	2
	random variables and continuous random variables.	
	2. Weak law of large numbers.	1
	3. Central limit theorem.	1
Unit V	Markov chains and countable state space	17
	1. Definition	1
	2. Examples.	2
	3. Gambler's ruin problem, Ehrenfest model, random walk	3
	on Z, Z^2 , Z^3 lattice.	
	4. Hitting times and hitting probabilities.	1
	5. Recurrence and transcience.	2
	6. States in a Markov chain	2
	7. Stationary measure and distribution.	3
	8. Convergence theorem for irreducible and aperiodic	3
	chains.	

1. Sheldon H. Ross, Introduction to probability models, 9th edition, Academic Press.

Unit I: Chapter 1.

Unit II: Chapter 2, Chapter 3.

Unit III: Chapter 2 Chapter 3.

Unit IV: Chapter 2 Chapter 3.

2. Lecture notes of Prof. Manjunath Krishnapur.

Unit: V.

References:

1. Books:

- 1. Paul G. Hoel, Sidney C. Port, Charles .J. Stone, Introduction to probability theory.
- 2. Geoffreey R. Grimmet and David R. Stirzaker, Probablity and random processes, 4th Edition.

Course/ Paper Title	Coding Theory
Course Code	21SMMT234C
Semester	III
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Error detection, correction and decoding	12
	1. Introduction.	2
	2. Communication channels.	2
	3. Maximum likelihood decoding.	2
	4. Hamming distance.	2
	5. Nearest neighbour / minimum distance decoding.	2
	6. Distance of a code.	2
Unit II	Finite fields	12
	1. Fields.	3
	2. Polynomial rings.	3
	3. Structure of finite fields.	3
	4. Minimal polynomials.	3
Unit III	Linear Codes	16
	1. Vector spaces over finite fields.	2
	2. Linear codes.	2
	3. Hamming weight.	2
	4. Bases for linear codes.	2
	5. Generator matrix and parity–check matrix.	2
	6. Equivalence of linear codes.	2
	7. Encoding with a linear code.	2

	8. Decoding of linear codes: Cosets; Nearest neighbour	2
	decoding for linear	
	codes; Syndrome decoding.	
Unit IV	Bounds in coding theory	08
	1. The main coding theory problem.	2
	2. Lower bounds: Sphere–covering bound;	2
	Gilbert–Varshamov bound.	
	3. Hamming bound and perfect codes: Binary Hamming	2
	codes; Golay codes.	
	4. Singleton bound and MDS codes.	2
Unit V	Cyclic codes	08
	1. Definitions.	2
	2. Generator polynomials.	2
	3. Generator and parity-check matrices.	2
	4. Decoding of cyclic codes.	2
Unit VI	Some special cyclic codes	04
	1. BCH codes: Definitions; Parameters of BCH codes.	4

San Ling, Chaoping Xing, Coding Theory, A First Course; Cambridge University Press, 2004.

Chap 2: Sections 2.1 to 2.5

Chap 3: Sections 3.1, 3.2, 3.3, 3.4

Chap 4: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8

Chap 5: Sections 5.1, 5.2, 5.3, 5.4

Chap 7: Sections 7.1 to 7.4

Chap 8: Sections 8.1, 8.1.1, 8.1.2

References:

1. Books:

- 1. Raymod Hill, A First Course in Coding Theory, Oxford University Press.
- 2. Rudolf Lidl, Günther Pilz, Applied Abstract Algebra, Second Edition, Springer, Reprint 2004.

- 1. https://nptel.ac.in/courses/117/106/117106031/
- 2. https://nptel.ac.in/courses/108/104/108104092/

Course/ Paper Title	Fourier Series and Boundary Value Problems
Course Code	21SMMT241
Semester	IV
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Fourier Series	10
	1. Piecewise Continuous Functions, Fourier Cosine Series, Examples.	3
	2. Fourier Sine Series, Examples.	3
	3. Fourier Series, Examples.	2
	4. Adaptations to Other Intervals.	2
Unit II	Convergence of Fourier Series	10
	1. One-Sided Derivatives, A Property of Fourier	3
	Coefficients.	
	2. Two Lemmas, A Fourier Theorem, Discussion of the	4
	Theorem and its Corollary, Convergence on Other	
	Intervals, Lemma.	
	3. Absolute and Uniform Convergence of Fourier series,	3
	Differentiation of Fourier Series, Integration of Fourier	U
	Series.	
Unit III	The Fourier Method	08
	1. Linear Operators, Principle of Superposition.	4
	 A Temperature Problem, A Vibrating String Problem. 	4

Unit IV	7 Boundary Value Problems		12
	1.	A Slab with Faces at Prescribed Temperatures, Related	4
		Problems, A Slab with Internally Generated Heat, Steady	
		Temperatures in a Rectangular Plate.	
	2.	Cylindrical Coordinates, String with Prescribed Initial	4
		Conditions, Resonance, Elastic Bar.	
	3.	Double Fourier Series, Periodic Boundary Conditions.	4
Unit V	Ortho	onormal Sets	10
	1.	Inner Products and Orthonormal Sets, Examples.	2
	2.	Generalized Fourier Series, Examples.	3
	3.	Best Approximation in the Mean, Bessel's Inequality and	3
		Parseval's Equation.	
	4.	Application to Fourier Series.	2
Unit VI	Sturn	n-Liouville Problems and Applications	10
	1.	Regular Sturm-Liouville Problems, Modifications,	4
		Orthogonality of Eigenfunctions, Real-Valued	
		Eigenfunctions and Nonnegative Eigenvalues, Methods of solution.	
	2.	Examples of Eigenfunctions Expansions, A Temperature	3
		Problem in Rectangular Coordinates, Another Problem,	5
		Other Coordinates.	
	3.	Modification of the Method, Another Modification, A	3
		Vertically Hung Elastic Bar.	5

J.W. Brown, R.V. Churchill, Fourier Series and Boundary Value Problems, 7th Edition, McGraw Hill Education (India) Private Limited, New Delhi.

Unit I: Chapter 1.

Unit II: Chapter 2.

Unit III: Chapter 4.

Unit IV: Chapter 5.

Unit V: Chapter 7.

Unit VI: Chapter 8.

References:

1. Books:

1. Murray Spiegel, Fourier Analysis with Applications to Boundary Value Problems, Schaum's Outline Series, McGraw Hill.

- 1. <u>https://www.youtube.com/watch?v=HoGNkZclxDU&list=PLs7oDAL8_ouJ5w8wCPtKnK2I09</u> <u>MIKC6kP</u>
- 2. https://nptel.ac.in/courses/111/106/111106046/

Course/ Paper Title	Differential Geometry
Course Code	21SMMT242
Semester	IV
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I		15
	1. Graphs and Level Sets.	3
	2. Vector Fields.	4
	3. The Tangent Space	4
	4. Surfaces.	4
Unit II		20
	1. Vector Fields on Surfaces; Orientation.	5
	2. The Gauss Map.	5
	3. Geodesics.	5
	4. Parallel Transport.	5
Unit III		15
	1. The Weingarten Map.	5
	2. Curvature of Plane Curves.	5
	3. Arc Length and Line Integrals.	5
Unit IV		10
	1. Curvature of Surfaces	10

John A. Thorpe, Elementary Topics in Differential Geometry, First Indian Reprint, Springer Publication, ISBN 978-81-8128-144-9.

Unit I: Chapter 1 to 4.

Unit II: Chapter 5 to 8.

Unit III: Chapter 9 to 11.

Unit IV: Chapter 12.

References:

1. Books:

- 1. Erwin Kryszig, Differential Geometry, Dover Publications Inc.
- 2. Christian Bar, Elementary Differential Geometry, Cambridge University Press.
- 3. Andrew Pressley, Elementary Differential Geometry, Springer.
- 4. T.J. Willmore, An Introduction to Differential Geometry, Dover Publications Inc.

- 1. <u>https://nptel.ac.in/courses/111/104/111104095/</u>
- 2. <u>https://www.youtube.com/watch?v=W9eFFO6pxWw&list=PL4fpys7KOcYg7TixVqy3F4ehhD</u> <u>Nk97ZqL</u>

Course/ Paper Title	Introduction to Data Science (Theory)
Course Code	21SMMT243T
Semester	IV
No. of Credits	02

Unit No.	Title with Contents	No. of Lectures
Unit I	Data science in a big data world	04
	1. Applications of data science	1
	2. Data sources- Social media, IoTdata, dataBase	1
	3. Types of Data: transactional data, time series data	1
	4. Multimedia data: images, Videos, textual data: pdfs, Docx	1
Unit II	The data science process	05
	1. Overview of the data science process.	1
	2. Cleaning data and transforming data	2
	3. Exploratory data analysis: data distribution, calculate	2
	quantile, IQR method, finding outliers, correlation	
Unit III	Machine learning	10
	1. What is machine learning?	
	2. Training data and testing data	1
	3. Types of machine learning algorithms	1
	4. Supervised learning vs Unsupervised learning	1
	5. Regression: Linear regression, Logistic regression	1
	6. Classification: Decision Tree, Random Forest, SVM	1
	7. Clustering: k-Mean, DBscan	1
	8. Dimension reduction: PCA	1

Unit IV	Handling large data on a single computer	04
	1. General techniques for handling large volumes of data.	2
	2. General programming tips for dealing with large data sets.	1
	3. Case study predicting malicious URLs.	1
Unit IV	Machine Learning Model accuracy metrics and errors	04
	1. Confusion matrix, F1-score, ROC	2
	2. MAPE, RMSE, accuracy	2
	,, _,, _	
Unit V	Applications of Machine Learning algorithm	05
	1. Fraud detection	2
	2. Prediction of rainfall	3
Unit VI	Data visualization	03
	1. Data visualization with Excel. Box plot, bar graph,	
	Histogram, pie chart, line graph.	03

1. Davy Cielen, Arno D. B. Meysman, Mohamed Ali, Introducing Data Science, Manning Publications Co., 1st edition, 2016.

Unit I: Chapter 1: 1.1 to 1.4.

Unit II: Chapter 2: 2.1, 2.3 to 2.5.

Unit III: Chapter 3: 3.1 to 3.4.

Unit IV: Chapter 4: 4.2 to 4.4.

Unit V: Chapter 5: 5.1 to 5.2.

Unit VI: Chapter 8: 8.2, Chapter 9: 9.1.

2. Peters Morgan, Data Analysis from Scratch with Python, AI Sciences. ISBN-13: 978-1721942817.

Unit III: Chapters 10, 11, 12.

References:

1. Books:

- An Introduction to Statistical Learning: with Applications in R, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 1st edition, 2013.
- 2. Introduction to Machine Learning, Ethem Alpaydin, Third Edition 2018 PHI Learning Private Limited.

- 1. <u>https://www.youtube.com/watch?v=fn1rKKNLuzk&list=PL15FRvx6P0OWTINBS_93NHG2hI</u> <u>n9cynVT</u>
- 2. <u>https://www.youtube.com/watch?v=4SJ7bEILPJk&list=PLLy_2iUCG87CNafffzNZPVa9rW-QmOmEv</u>

Course/ Paper Title	Introduction to Data Science (Practical)
Course Code	21SMMT243P
Semester	IV
No. of Credits	02

Practical No.	Practical Name	No. of Hours
1	Reading xlsx files, reading csv file through python	4
2	Writing csv and xlsx files with pandas with given column names and dates	4
3	Practical on NUMPY Library : maths functions walk through	4
4	Practical on NUMPY Library	4
5	Data manipulation with PANDAS library with Data Frame	4
6	Data manipulation with PANDAS library	4
7	Practical on Data cleaning, Find Outlier with IQR method	4
8	Practical on Data preparation and visualization	4
9	Practical on preparation and visualization	4
10	Practical on Machine Learning Algorithm: Linear Regression	4
11	Practical on Machine Learning Algorithm: Decision Tree Classification	4
12	Practical on Machine Learning: Confusion matrix, F1-Score	4

* Three practical sessions for CIE.

Open data set sites : https://data.gov.in/

Course/ Paper Title	Number Theory
Course Code	21SMMT244A
Semester	IV
No. of Credits	04

Unit No.	Title with Contents	No. of Lectures
Unit I	Unique Factorization	12
	 Unique Factorization in Z, Unique Factorization in k[x]. Unique Factorization in a Principal Ideal Domain. The Rings Z[i] and Z[ω]. 	4 4 4
Unit II	Congruence	12
	 Congruence in Z, The congruence ax ≡ b(m). The Chinese Remainder Theorem. 	6 6
Unit III	Quadratic Reciprocity	12
Unit IV	 Quadratic Residues. Quadratic Reciprocity. Some Functions of Number Theory	6 6 12
	 The Greatest Integer Function. Arithmetic Functions. The Möbius Inversion Formula. 	4 4 4

Unit V	Algebraic Numbers	12
	1. Polynomials (Revision), Algebraic Numbers.	4
	2. Algebraic Number Fields, Algebraic Integers.	4
	3. Quadratic Fields, Units in Quadratic Fields. Primes in	4
	Quadratic Fields.	

1) Kenneth Ireland, Michael Rosen, A Classical Introduction to Modern Number Theory, Springer, 4th Indian Reprint, 2013.

Unit I: Chapter 1: Arts 1 to 4.

Unit II: Chapter 3: Arts 1 to 4.

2) Ivan Niven, Herbert Zuckerman, Hugh Montgomery: An Introduction to Theory of Numbers, John Wiley and Sons, 5th Edition.

Unit III: Chapter 3: Arts 3.1 and 3.2.

Unit IV: Chapter 4: Arts 4.1 to 4.3.

Unit V: Chapter 9: Arts 9.1 to 9.7.

References:

1. Books:

- 1. G. Telang, Number Theory, Tata McGraw Hill.
- 2. M. B. Nathanson, Methods in Number Theory, GTM, Springer 3rd Indian Reprint, 2009.

- 1. <u>https://nptel.ac.in/courses/111/101/111101137/</u>
- 2. <u>https://www.youtube.com/watch?v=F659tUopJMg&list=PLR3C3NSCyhZQLANHMMCiSrTg6</u> <u>OJcSMpzD</u>

Course/ Paper Title	Statistical Inference
Course Code	21SMMT244B
Semester	IV
No. of Credits	04

Unit No	Title with Contents	No. of Lectures
Unit I	Correlation and Regression Analysis	15
	1. Introduction and Scatter Diagrams.	1
	2. Karl Pearson's Coefficient of Correlation.	2
	3. Spearmen's Rank correlation coefficient.	1
	4. Method of Concurrent Deviations.	1
	5. Interpretation of r and Probable Error.	1
	6. Linear Regression.	2
	7. Lines of Regression.	1
	8. Theorems on Regression Coefficients.	2
	9. Yule's Rule.	1
	10. Order of Regression coefficients.	1
	11. Statistical Inferences about the Regression Parameters.	2
Unit II	Hypothesis Testing	13
	1. Statistical Hypothesis, general concepts	2
	2. Testing a statistical hypothesis	2
	3. Types of errors in testing of hypothesis	2
	4. Level of significance	1
	5. Critical regions	1
	6. Use of p values for decision making	1
	7. Tests of significance for single mean (variance known)	1
	8. Tests of significance for single mean (variance unknown)	1

	9. Confidence interval estimation, Probability distribution	2
Unit III	Chi square distribution	13
	1. Introduction of Chi-square Distribution	1
	2. Chi-square test for Goodness of Fit and its conditions for	2
	validity.	
	3. Chi-Square test for independence of attributes.	2
	4. Degrees of Freedom.	2
	5. Test for equality of several Proportions.	2
	6. Chi-square test for population variance.	2
	7. Applications of Chi-square Distribution.	2
Unit IV	Small Sample Tests	12
	1. Critical Values and Applications of t-distribution.	2
	2. Confidence Interval for difference of two means.	2
	3. Paired t-test for difference of two Means.	2
	4. t-test for significance of an observed sample correlation	2
	coefficient.	
	5. F-distribution and its applications.	1
	6. F-test for equality of population variances.	1
	7. Relation between t, F and Chi-square Distributions.	2
Unit V	Analysis of Variance (ANNOVA)	07
	1. One-way analysis of variance	1
	2. Two-way analysis of variance	2
	3. The Kruskal-Wallis one-way analysis of variance by ranks	2
	4. The Friedman two-way analysis of variance by ranks	2

1. Fundamentals of Statistics, by S. C. Gupta (Seventh Edition) (Chapters 8, 9, 13, 14, 16, 18, 19, 23)

References:

1. Books:

- 1. Introduction to Probability and Statistics for Engineers and Scientists, by Sheldon M. Ross (Fourth Edition).
- Biostatistics, A Foundation for Analysis in Health Sciences, by Wayne W. Daniel (Eighth Edition, Wiley Publications).
- 3. Mathematical Statistics, by Parimal Mukhopadhyay.
- 4. Statistics for the Life Sciences, by M. Samules, J. Witmer and A. Schaffner (Fifth Edition, Pearson India).

- 1. https://nptel.ac.in/courses/111/105/111105124/
- 2. https://nptel.ac.in/courses/111/105/111105043/

Course/ Paper Title	Integral Equations
Course Code	21SMMT244C
Semester	IV
No. of Credits	04

Unit No.	Title with Contents	No. of Lectures
Unit I	Introductory Concepts	12
	1. Definitions.	2
	2. Classification of Linear Integral Equations.	2
	3. Solution of an Integral Equation.	2
	4. Converting Volterra Equation to ODE.	2
	5. Converting IVP to Volterra Equation.	2
	6. Converting BVP to Fredholm Equation.	2
Unit II	Fredholm Integral Equations	12
	1. Introduction.	1
	2. The Decomposition Method.	2
	3. The Direct Computation Method.	2
	4. The Successive Approximation Method.	2
	5. The Method of Successive Substitutions.	2
	6. Comparison between Alternative Methods.	1
	7. Homogeneous Fredholm Equations.	2
Unit III	Volterra Integral Equations	14
	1. Introduction.	1
	2. The Decomposition Method.	2
	3. The Series Solution Method.	2
	4. Converting Volterra Equation to IVP.	2
	5. The Successive Approximation Method.	2
	6. The Method of Successive Substitutions.	2

	7. Comparison between Alternative Methods.	1
	8. Volterra Equation of the First Kind.	2
Unit IV	Integro-Differential Equations	10
	1. Fredholm Integro-Differential Equations.	5
	2. Volterra Integro-Differential Equations.	5
Unit V	Singular Integral Equations	06
	1. Definitions.	2
	2. Abel's Problem.	2
	3. The Weakly-Singular Volterra Equations.	2
Unit VI	Integral Transform Methods	06
	1. Introduction.	1
	2. Fourier Transform.	1
	3. Laplace Transform.	1
	4. Applications to Volterra Integral Equations with	1
	Convolution-Type Kernels.	
	5. Examples.	2

 Abul-Majid Wazwaz, A First Course In Integral Equations, World Scientific Publications, 1997.

Unit I: Chapter 1.

Unit II: Chapter 2.

Unit III: Chapter 3.

Unit IV: Chapter 4 and 5.

Unit V: Chapter 6: Sections 6.1, 6.2, 6.3, 6.4.

2. Ram P. Kanwal, Linear Integral Equations, 2nd Edition, Springer Science+Business Media, LLC.

Unit VI: Chapter 9: Sections 9.1, 9.2, 9.3, 9.4, 9.5.

References:

1. Books:

- 1. Rainer Kress, Linear Integral Equations, 3rd Edition, Springer.
- Abdul J. Jerri, Introduction to Integral Equations with Applications, Wiley-Interscience; 2nd Edition (September 3, 1999).

- 1. https://www.youtube.com/watch?v=GiPOQC5nYMs&list=PL521C2DFD15FF56
- 2. <u>https://nptel.ac.in/courses/111/107/111107103/</u>

CBCS:2022-2023

Non CGPA

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

Faculty of Science & Technology

Syllabus of

Skill Development Course on LaTeX and SageMath (Non CGPA)

Choice Based Credit System Syllabus To be implemented from the academic year 2022-2023 **Mode of Assessment:** Evaluation will be done continuously. There will be two Practical test of 25 marks each, two assignments of 10 marks and 5 marks for journal.

Details of Syllabus:

Course/ Paper Title	Introduction to LaTeX and SageMath
Course Code	21DSDLT24M
Semester	IV
No. of Credits	3

Syllabus

Unit No	Title with Contents	No. of
		Lectures
Unit I	Introduction to LaTeX	02
	1.1 Definition and application of LaTeX, Preparation	01
	and Compilation of LaTeX input file	
	1.2 LaTeX Syntax and Keyboard Characters in LaTeX	01
Unit II	Formatting Words, Lines, and	04
	Paragraphs	
	2.1 Text and Math Mode Fonts, Emphasized and	01
	Colored Fonts.	
	2.2. Labeling and Referring Numbered Items.	01
	2.3. Texts Alignment and Quoted text.	01
	2.4. New Lines and Paragraphs.	01
Unit III	Listing and Table Preparation	06
	3.1 Listing Texts.	02
	3.2 Table Through the tabular Environment and	01
	tabularx Enviroment.	
	3.3 Vertical Positioning of Tables, Sideways (Rotated)	01
	Texts in Tables.	
	3.4 Merging Rows and Columns of Tables.	02

Unit IV	Equation Writing	03
	4.1 Basic Mathematical Notations and Delimiters.	01
	4.2 Mathematical Operators, Mathematical Expression	
	in Text- mode.	01
	4.3 Simple Equations and Array of Equations.	01
Unit V	Figure Insertion and Figure	03
	Drawing	
	5.1 Commands and Environment for Inserting Figures.	01
	5.2 Inserting a simple figure.	01
	5.3 tikz package for drawing figures.	01
Unit VI	Presentation Using Beamer	03
	6.1 Frames and Sectional Units in	01
	Presentation.	
	6.2 Presentation Structure.	01
	6.3 Appearance of a Presentation	01
	(Beamer Themes).	
Unit VII	Getting Started with SageMath	03
	7.1 Introduction and Installation of SageMath.	01
	7.2 Exploring integers, solving	
	equations in SageMath.	01
	7.3 2D and 3D plotting in	
	SageMath.	01
Unit VIII	Calculus with SageMath	06
	8.1 Calculus of one variable with SageMath.	01
	8.2 Applications of derivatives.	01
	8.3 Applications of Integrals.	01
	8.4 Partial Derivatives and gradients,	01
	jacobians.	
	8.5 Local maximum-minimum.	01
		01

	8.6 Application of local maximum	
	and minimum	
Unit IX	Linear Algebra with SageMath	07
	9.1 RREF and Solving system of linear	01
	Equations.	
	9.2 Vector spaces in SageMath.	01
	9.3 Linear Transformations with SageMath.	01
	9.4 Eigenvalues and Eigenvectors with	01
	SageMath.	
	9.3 Inner Product Spaces in SageMath.	01
	9.4 Gram-Schmidt Process.	02
Unit X	Numerical Analysis with SageMath	08
	10.1 QR- Factorization, Singular Value	02
	Decomposition (SVD).	
	10.2 Numerical Solution of algebraic equations.	02
	10.3 Numerical Solutions of system linear	01
	equations.	
	10.4 Interpolations.	01
	10.5 Numerical Integration.	02

Text book: LaTeX

1. Dilip Datta, LaTeX in 24 Hours, A Practical Guide for Scientific Writing, Springer

Unit I: Chapter-1.

Unit II: Chapter-2, Chapter-3 : 3.1, 3.2, 3.3, 3.4, 3.5.

Unit III: Chapter -6: 6.1, Chapter-7: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7.

Unit IV: Chapter-11: 11.1,11.2, 11.3, 11.4, 11.5.

Unit V: Chapter-9: 9.1, 9.2.

Unit VI: Chapter 21: 21.1, 21.2, 21.3, 21.4.

2. Zofia Walczak, Graphics in LATEX using TikZ.

Reference Books: SageMath

1. Mathematical Computation with Sage by Paul Zimmermann available from on http://www.sagemath.org.

2. An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods by Razvan A Mezei, Springer.

3. Sage for Undergraduates, Gregory V. Bard.